
Automating To-Do Lists for Users:
Interpretation of To-Dos for Selecting and Tasking Agents

Yolanda Gil and Varun Ratnakar

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292
gil@isi.edu, varunr@isi.edu

Abstract
To-do lists have been found to be the most popular
personal information management tools, yet there is no
automated system to interpret and act upon them when
appropriate on behalf of the user. Automating to-do lists
is challenging, not only because they are specified as free
text but also because most items contain abbreviated
tasks, many do not specify an action to be performed, and
often refer to unrelated (personal) items. This paper
presents our approach and an implemented system to
process to-do list entries and map them to tasks that can
be automated for the user by a set of agents. Since the
format of to-do entries is not very amenable to natural
language processing tools that can parse and create a
structured interpretation, our approach is to exploit
paraphrases of the target tasks that the agents can perform
and that specify how the free-text maps to the task
arguments. As users manually assign to-do to agents for
automation, our system improves its performance by
learning new paraphrases. We show an evaluation of our
approach in a corpus of 2100 to-do entries collected from
users of an office assistant multi-agent system.

Introduction
 To-do lists are the most widely used of all personal
information management tools, used more than calendars
and contact lists (Jones and Thomas 1997). Many to-do
list managers are widely available on the web (e.g.,
todolistsoft.com, tadalist.com, todoist.com, voo2do.com
among many others). Although there have been user
studies of to-do lists that have uncovered use patterns
and desiderata (e.g., (Bellotti et al 2004; Hayes et al
2003)), no system has been developed to date to provide
intelligent assistance to users. As (Norman 1991), we
see an immense and largely unexplored opportunity
through automatically interpreting, managing, executing,
and in general assisting users with to-do lists. To-do
lists include items that can be acted upon by intelligent
agents that have the capabilities to accomplish some of

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

those items. This kind of investigation becomes possible
as agent-based systems are developed to assist users with
routine tasks, such as office assistants (e.g., Electric
Elves (Tambe et al 2002) and CALO (Myers et al 2007;
Berry et al 2006)) and other assistants that exploit agents
and services on the web (e.g., (Berners-Lee et al 2001)).
 Our initial focus is on mapping to-do list entries into
the capabilities of agents that can automate those entries
for the user. To-do entries are jotted by the user as free
text, while agent capabilities are formal descriptions that
typically include a task to be accomplished and its
arguments. A study of to-do lists created by several users
of the CALO system over time showed that to-do lists
have idiosyncratic content that make their interpretation
a challenge (Gil and Ratnakar 2008). Less than one in
seven entries could be automated by some agent, since
many entries contain tasks that only the user can do. Of
those, most were incomplete in that they did not specify
necessary arguments. Two thirds of the entries in that
study did not begin with a verb. In summary, to-do list
entries are not well-formed or complete sentences
typically found in text, and lack the dialogue context that
is present in conversational interfaces (e.g., (Allen et al
2001)).
 An important goal of our research is to accommodate
new tasks as new agents become available or existing
agents extend their capabilities. This poses an important
requirement that the system can learn to map to-do
entries into new agent capabilities. Learning would have
the added advantage that the system could adapt its
mappings to suit the idiosyncrasies of particular users
(such as personal abbreviations). Another advantage of
learning is that the system would be able to take on any
domain, rather than being designed and optimized for
specific domains or purposes.
 This paper describes an approach and implemented
system that uses paraphrases of agent capabilities to map
the free text of a to-do entry into a capability and its
arguments. The system learns new paraphrases as it sees
examples of correct mappings, which can be collected
from users as they task the agents by hand, or acquired
from volunteer contributors (Chklovski 2005; Chklovski
and Gil 2005).

Proceedings of the Twenty-Third Conference of the Association for the Advancement of Artificial Intelligence (AAAI-08), Chicago, IL, July 13-17, 2008.

 The paper begins with a general description of the
different aspects of to-do list interpretation and mapping.
After describing our approach and implementation, we
present an evaluation of the system using a corpus of to-
do list entries collected from users over several months.

Assisting Users with To-Do Lists
 We consider six phases in interpreting and automating
to-do list entries, shown in Figure 1. The left side shows
the kind of result expected from each step, and the right
side gives an example. As we will see, the automation
of each of these steps can be turned into an interface
extension that can be useful to the user in its own right.
 Relevance involves determining whether a to-do list
entry is relevant to any of the agent capabilities. That is,
whether the to-do entry is within the scope of the tasks
that the system can automate for the user. If the system
has good performance in this step, it can help the user by
highlighting those entries in the to-do list so that the user
is aware that there are agents that could automate them.
 Selection involves finding the agent capability (or
target task) that is appropriate for automating a given to-
do entry. Note that the system may generate several
candidates. If the system has good performance in this
step, the top ranked candidate can be shown to the user
as a possible way to automate the entry. Other
candidates, and there should not be too many, can be
shown as alternatives to the user as a pull-down menu.
 Association will determine which chunks of the to-do
entry text correspond to which arguments in the target
task. Good performance in this step would allow the
system to have the menu to task the agent pre-filled by
those mapped arguments, requiring little or no editing
from the user to task the agent.
 The last three phases are shown here for completion
but have not been the focus of our work to date.
Recognition finds an object in the system that
corresponds to the text chunk of an argument. For
example, the to-do entry may contain the first name of a
person and the recognition phase would find that
person’s formal representation, which will allow the
agent internally to access email addresses or other
information useful for the task. Notice that not all
arguments can be mapped to formal objects. An
example is the topic of a meeting, which is only useful
(at least in our work) to the other human attendees.
Completion involves completing the other argument
values not included in the to-do list entry, either by using
default values, typical values learned for each user, or
values inferred from the user’s context (e.g., other
meetings, emails, etc.) Invocation involves deciding
whether the agent should be invoked, which can be done
with the user’s explicit consent or using some measure
of adjustable autonomy for the task.
 These last three stages could be done by the agent,
where the agent could have mechanisms to set default
values and to make decisions about when to act. The

Figure 1: Phases involved in interpreting and
automating to-do list entries. This paper
focuses on the first three phases.

first three stages are properly the responsibility of a to-
do list manager and are the focus of this work.

Using Paraphrases to Interpret To-Do List
Entries

 Our approach to interpreting to-do lists is to use
paraphrases to re-state the to-do list entry until it can be
mapped to a target task or the system runs out of
paraphrases to try. We pursued this direction for two
main reasons. Because the to-do entries are incomplete
and not well-formed sentences, they do not lend
themselves to natural language techniques such as
chunking and parsing. The second reason is that we
want to improve the system’s performance by learning as
users use it.
 In our approach, the system maintains a list of
paraphrase patterns for each target task. A paraphrase
essentially reflects how the user might invoke certain
tasks. Paraphrase patterns contain special keywords
combined with task arguments. Some example
paraphrase patterns for a task are:

Task: SendEmail +recipient-s +topic
Paraphrases:
 ask +recipient-s to +topic
 message to +recipient-s
 send +topic to +recipient-s
 email +recipient-s about +topic

 In this example, “SendEmail” is the target task, which
has the two arguments “recipients” and “topic”. Task
arguments are marked with a “+” in the paraphrase
pattern. Keywords in the patterns include “ask”, “to”,
and “about.” The keywords are used for matching
paraphrases with the entry, while the arguments are used
to map portions of the to-do entry to those arguments. In
order to have a successful match, all the keywords in the
pattern should match the to-do entry in the order that
they are written in the paraphrase. Any portion of text in
between matched keywords and marked in the pattern as
an argument gets bound to that argument. Each
paraphrase pattern has a direct correspondence between
its arguments and the arguments in the target task. Lists
are marked in the pattern with the suffix “-s” at the end
of the argument, which is matched with special
keywords such as “and”, “or”, “/”, “,” in the to-do entry.
Using the paraphrase patterns listed above, these are
some example to-do items and their matches:

Ask Bill to give feedback on paper
 -> ask +recipient-s=”Bill” to +topic=”give feedback on paper”

Ask Bill for feedback on paper
 -> --No match--

Message to Bill about project report
 -> message to +recipient-s=”Bill” +topic=”project report”

Send message to Bill
 -> message to +recipient-s=”Bill”

 Note that the to-do entry “Send Message to Bill”
matches the paraphrase pattern “message to +recipient-
s” as the whole pattern is contained within the entry. In
other words, the text matches a paraphrase pattern if all
keywords in the pattern match the text. The reverse is
not the case, for example the to-do entry “Email to Bill”
would not be matched with the paraphrase pattern “send
email to +person” since not all the pattern keywords are
present in the to-do entry.
 In selecting a target task, there may be several
candidates and we produce a ranking based on the
match. We define the specificity of the paraphrase as the
number of keywords in the paraphrase. In case of a
match, the ranking of the match is the specificity of the
paraphrase pattern that it matched against.
 Paraphrase patterns can be provided by hand, which
may be useful to seed the system and bootstrap its initial
performance. Our system can learn paraphrase patterns
as the user invokes an agent by hand by selecting an
agent from a menu and tasking it through a form-filling
interface (this is how users task agents with to-do items
in the current system). An alternative approach is to
learn paraphrases from volunteer contributors where the
system can acquire the paraphrases off-line from
volunteers by prompting them for variants of already
known paraphrase patterns (Chklovski 2005).
 To learn paraphrases, we create a variabilized pattern
of each to-do entry that is mapped to a target task, where
the variables correspond to the arguments in the target
task. Our training examples come from the user as they
invoke agents by hand. Other researchers have addressed

paraphrase learning from text corpora (e.g., (Barzilay
and Lee 2003)), but make use of vast amounts of data (in
the order of megabytes) that we do not have available.
Learning is currently done by looking at the set of
“answers” that are collected from the user over time.
These answer keys contain the to-do entry and the
matching task and arguments as filled by the user. The
system scans through the to-do entry and replaces the
text mapped to the argument with the task argument
variable to create the paraphrase pattern. An example
answer key is:

to-do-entry: email John about demo deadlines
task-type: SendEmail +recipients +topic
arguments: recipients="John" topic="demo deadlines"

 which would result in the following learned pattern:
email +recipients about +topic

 However, not all paraphrases that are created are
eligible for use. We restrict paraphrase patterns as
follows. There needs to be at least one keyword, so for
example "+topic" is not allowed. This restriction is to
avoid matching anything and everything. The more
specific the paraphrase, the better chance there is of
getting a correct match. Another restriction is that
arguments must be separated by one or more keywords.
For example, "ask +recipients +topic" is not allowed. This
second restriction is needed because we do not have a
recognition phase. That is, the system does not have a
mechanism to correctly identify where the first argument
stops and the second argument starts. In our current
system, that paraphrase pattern would not be allowed (or
learned). We discuss this restriction further below.

Metrics for Evaluation
 Since our system is the first of its kind ever developed
(at least to our knowledge), we needed to define metrics
to measure its performance. Because of the novelty of
this research area, we have focused on evaluating the
performance of the system’s functionality in terms of its
internal algorithms rather than on evaluating usability
issues. Therefore, we evaluated the system off-line, with
a corpus of to-do entries collected from CALO users
over several months.
 The evaluation tests performance on identification,
selection, and association. As we discussed earlier, good
performance in each of the tasks can have direct utility to
the user.

Metrics for Task Relevance Identification
 For task relevance identification, we measure
performance with accuracy, precision, and recall metrics.
The accuracy metric is defined as the percentage of to-do
items that were correctly flagged or not flagged.
Precision is defined as the fraction of to-do entries that
were flagged as relevant that are actually relevant:

Precision = {to-dos relevant to agent capabilities
 AND flagged as relevant}

 / {to-dos flagged as relevant}

Recall is defined as the fraction of to-do entries actually
relevant that are actually flagged by the system as
relevant:

Recall = {to-dos relevant to agent capabilities
 AND flagged as relevant}
 / {to-dos relevant to agent capabilities}

 Precision and recall can be combined as a joint F-
measure metric that takes their harmonic mean, F-metric
= 2/(1/Precision + 1/Recall).

Metrics for Task Class Selection
 To evaluate performance with respect to task class
selection, we want to use metrics that reflect the
system’s value to the user. Precision and recall would
not be appropriate. For example, if an option is
generated, but is ranked 17th, the system’s precision and
recall would be high because the correct selection would
have been generated. But since the user may never see
it, the performance metrics that we use should reflect
that it was not found useful to the user. Therefore,
improving on the precision and recall metrics should not
be our ultimate goal. Ideally, the system should always
aim to choose the right task as its top-ranked suggestion.
To measure performance in this respect, we use the
following metric:

t-metric = % entries where the correct answer is the
top option proposed

 To track the system’s behavior, we use the following
metrics as well:

g-metric = % entries where the correct task mapping
is proposed as a candidate

c-metric = average number of candidates generated
that are selected to appear in the top k to show
user

 Note that performance in the g-metric and the c-metric
directly affects the t-metric, but our goal is to improve
the t-metric performance.

Metrics for Argument Association
 For association, we measure performance in terms of
how many corrections would the user have to do to the
initial mapping and bindings proposed by the system in
order to get the desired argument mappings. That is, a
given suggestion will be used to fill the initial task
description that the user will correct if needed. Our
metric is the edit distance, namely how many changes
would the user need to make to the system’s mapping
and bindings if the user had to correct the top suggestion.

Evaluation Methodology
 For our evaluation, we obtained to-do entries and
processed them off-line. These to-do entries were
obtained as users were jotting them as part of their
normal use of the system. The system was completely
passive and provided no assistance with the to-do lists.

Our goal at this stage of the project is to assess the
quality of the system before it is deployed for use with
true on-line learning and assistance.

Evaluation Corpus. We collected a corpus of 2400 to-
do list entries from a dozen users of CALO during two
subsequent annual evaluation periods that lasted several
months each. A subset of 300 entries were extracted as a
reference corpus and used for development and analysis
purposes. The remainder 2100 entries were set aside for
evaluation. When providing examples throughout this
paper, we created fictional to-do entries to protect the
privacy of our users.

Target Tasks. The CALO Task Ontology where agents
can register their capabilities is under development, and
has not been populated. However, it contains a set of 87
task categories that were used to evaluate the CALO
system. These task categories only have the class name,
and no arguments are specified. Most of them are not
relevant to the to-do list corpus collected. Example task
categories are: Decide, Explain, Move, Calculate,
Execute, Commit, Learn, Affect, Wait, Input, Borrow,
Claim, AnswerWithChoice, AnswerWithData,
Announce, and Invoke. We selected a subset of these
tasks that we could map reasonably well to capabilities
of agents available in CALO. We represented their
arguments based on the kind of information that
automating these tasks would require for these agents.
This resulted in a set of 18 candidate target tasks that we
used for evaluation:

PlanTrip +location
PlanTrip +event +date +location
ScheduleVisit +person +timeframe
ScheduleInterview +visitor +timeframe
ScheduleSeminar +person +timeframe
ScheduleMeeting +attendees +topic +timeframe
RescheduleMeeting +attendees +timeframe +topic
ScheduleGroupVisit +group +topic +timeframe
Buy +equipment +person
Buy +office-supplies +person
Buy +flight-reservation +person
Lookup +document
Download +url
Print +document
Edit +document
Approve +purchase-request
Approve +travel-request
SendEmail +recipients +topic

Answer Set. We asked an annotator to label the test set
with the correct answers for each task. In some sense
only the user that created the to-do item would know
what the correct answers were based on their true
intention and context, so the annotator took a best guess
at what the tasks were intended to accomplish. For
example:

To-Do-Entry: Setup discussion on IUI paper
Correct-Selection: ScheduleMeeting +person +timeframe +topic
Correct-Association: topic = “IUI paper”

 The to-do entries that did not correspond to any task
were given NULL selection and association labels.

There were a total of 382 entries that were marked with a
target task, the rest did not correspond to any task. For
the entries that were mapped to tasks, 130 were mapped
to SendEmail, 90 to Lookup, 58 to Edit, 51 to
ScheduleMeeting, 25 to the PlanTrip tasks, 10 to the Buy
tasks, 9 to ScheduleInterview, 3 to ScheduleVisit, and 2
each to Download, Print and ScheduleSeminar. There
were four tasks that did not appear at all in the annotated
reference corpus and were the RescheduleMeeting,
ScheduleGroupVisit, Buy, and Approve tasks.
 Notice that the tasks included in each of the sets are
not completely unrelated to one another in that they have
many terms and argument types in common. Therefore,
the system must discriminate among them correctly.

Results
 We compared the performance of our system with
respect to a baseline system that made random decisions,
as well as with several configurations of bag of words
matching. Our system is shown as ordered matching,
to distinguish it from bag of words matching of
paraphrase patterns. We show learning curves for each
metric at 8%, 15%, 30%, 60% and 100% of the training
data using 4-fold cross validation.
 The baseline system performs no NL processing. For
the relevance phase, this baseline system flags an entry
as relevant 14% of the times, since that is the proportion
of relevant entries estimated by prior corpus analysis
(Gil and Ratnakar 2008). For the selection phase, it
chooses from the set of target tasks one or two tasks at
random, and randomly ranks them. The baseline system
does not generate any associations.
 We also compared the performance of our system with
simpler systems with minimal natural language
processing capabilities. These systems use simple bag of
words matching between the to-do entry and the task
paraphrase patterns. We built two variants. One variant
normalizes words from their morphological variations,
using the well-known Porter stemmer
(artarus.org/~martin/PorterStemmer). The second
variant also uses synonyms from WordNet (synsets), in
addition to using the stemmer.

Results for Task Relevance Identification
 The accuracy metric is shown in Figure 2. Our
system has very good performance, over and above the
performance of the other methods, with 87.6% accuracy
after learning. After learning, out of 2100 entries our
system classified correctly 1841 entries (flagged 160 as
relevant that were actually relevant and did not flag 1681
that were actually not relevant) and misclassified the rest
(flagged 37 that were actually not relevant and did not
flag 222 that were actually relevant). The accuracy of a
simple baseline system that always guessed relevance
would be 18% for this dataset (a bit higher than the 14%
relevance found for the corpus in (Gil and Ratnakar
2008)). A simple baseline system that always guessed

Figure 2: Task Relevance Identification: Accuracy

Figure 3: Task Relevance: Precision, Recall, F-

Measure

Figure 4: Task Selection metrics: t-metric, g-metric,

c-metric

Figure 5: Argument Association: edit distance

irrelevance would be 82% accurate but to no good use as
it would never do anything to assist the user.
 Figure 3 shows the precision, recall, and F-measure
metrics. Our system shows very high precision,
significantly higher than the other methods from very
early on the training. This means that when our system
intervenes to make suggestions about a to-do entry, it is
right to do so with very high probability. Recall is low
for our system, as can be expected since its matches are
much more restrictive than the other methods. We
discuss how to address our overly constrained matching
in the discussion section below.

Results for Task Class Selection
 Figure 4 shows the data for task class selection. Our
system performs best at the task, which is reflected in the
t-metric results, and reaches over 90% correctness early
during training. Although the g-metric shows that all
methods are able to generate the right answer as part of
their candidate set, the c-metric shows that our system
generates a single candidate very early on during
training. The user would be shown the correct target
task with very high probability.

Results for Argument Association
 Figure 5 shows the results for argument association.
Notice that the baseline and bag of words methods do
not have the ability to make such associations, so for
those methods we show the amount of parameters that
the correct answer would contain. This corresponds to
how many edits the user would have to make. For
example, “Email Bill” would correspond to sendEmail
recipient=”Bill”, and since the to-do does not contain a
topic then the user would only have to fill one argument
of the target task by hand. In addition, we only reflect
the edit distance of to-do entries where the selection
phase for the method ranked the correct answer at the
top. Our system not only does this automatically but
performs extremely well, requiring between 0.2 and 0.4
user edits on average.

 Discussion
 We noted that the performance of our system suffered
from a limitation of our paraphrase pattern language,
namely that all arguments in a paraphrase must be
separated by keywords. An example is:

Todo Entry: Send Bill final paper
Desired pattern: Send +recipient-s +topic

 Ideally, such paraphrase pattern could be handled if
the system were able to detect chunks in the to-do entry
and map them to each of the arguments. In this case, the
system could identify “Bill” and “final paper” as
chunks and map each to the respective argument. This
would also help distinguish between the two Buy tasks
(one for equipment and another for office supplies). Off-
the-shelf chunking and parsing tools are difficult to use
in to-do entries because to-do entries are not complete or

well-formed sentences. We will investigate the use of
adaptive parsers in future work.
 An alternative that we are planning to explore is to
expand our paraphrase approach to the recognition
phase. That is, to collect paraphrases for ontological
objects that can give us type information. For example,
we would collect paraphrases such as “Bill” and “Bill
H.” that refer to the ontological object calo:WilliamHill
which is of type calo:Person. By combining recognition
and matching, the system would be able to use
paraphrase patterns without separating keywords.

Conclusions
This paper introduced a novel use for AI techniques in

assisting users with to-do lists, which are used for
personal information management more than calendars
and other tools. By interpreting to-do entries and
mapping them to the capabilities of agents, we can assist
users by automating and managing their to-do lists. To-
do lists are challenging to interpret as they are often
incomplete and abbreviated. Our approach is to exploit
paraphrases of agent capabilities to interpret the entry
and identify the task arguments. We discussed the
implementation of this approach in the context of the
CALO office assistant architecture. Our system
improves its performance by learning new paraphrases
from users.

One important empirical question is whether users
would adapt the way they jot to-do entries to facilitate
the system’s interpretation and quality of assistance. To
investigate this, we are planning to test our system in an
interactive mode.

Acknowledgements

We gratefully acknowledge funding for this work by
DARPA under contract no. NBCHD030010. We thank
Tim Chklovski for many useful discussions in the early
stages of this work. We also thank Karen Myers and
Ken Conley for useful feedback on this work and its
integration with the CALO architecture.

References
Allen, J.; Byron, D. K.; Dzikovska, M.; Ferguson, G.;

Galescu, L.; and Stent, A. 2001. “Towards
Conversational Human-Computer Interaction.” AI
Magazine, 22(4):27-37.

Barzilay, R. and Lee, L. 2003. “Learning to Paraphrase:
An Unsupervised Approach Using Multiple-Sequence
Alignment.” Proceedings of the North American
Chapter of the Association for Computational
Linguistics (NAACL/HLT).

Bellotti, V., B. Dalal, N. Good, P. Flynn, D. Bobrow, N.
Ducheneaut. 2004. What a To-do: Studies of Task
Management Towards the Design of a Personal Task
List Manager. ACM Conference on Human Factors in
Computing Systems (CHI).

Berners-Lee, T., Hendler, J., and Lassila, O. 2001. “The
Semantic Web.” Scientific American, May 2001.

Berry, P.; Conley, K.; Gervasio, M.; Peintner, B.; Uribe,
T.; and Yorke-Smith, N. 2006. “Deploying a
Personalized Time Management Agent.” Proceedings
of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems
(AAMAS).

Chalupsky, H., Gil, Y., Knoblock, C. A., Lerman, K.,
Oh, J., Pynadath, D. V., Russ, T. A. and M. Tambe.
2002. “Agent Technology to Support Human
Organizations.” AI Magazine, Vol. 23, No 2.

Chklovski, T. 2005. “Collecting Paraphrase Corpora
from Volunteer Contributors”. Proceedings of the
Third International Conference on Knowledge
Capture (K-CAP).

Chklovski, T. and Gil, Y. 2005. An Analysis of
Knowledge Collected from Volunteer Contributors.
Proceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI-05).

Gil, Y., and Ratnakar, V. 2008. “Towards Intelligent
Assistance for To-Do Lists.” Proceedings of the 2008
International Conference on Intelligent User
Interfaces (IUI).

Hayes, G., Pierce, J. S., and Abowd, G. D. 2003.
“Practices for Capturing Short Important Thoughts.”
ACM Conference on Human Factors in Computing
Systems (CHI).

Jones, S. R. and Thomas, P. J. 1997. “Empirical
assessment of individuals’ ‘personal information
management systems’.” Behaviour and Information
Technology 16(3): 158-160.

Myers., K., P. Berry, J. Blythe, K. Conley, M.
Gervasio, D. McGuinness, D. Morley, A. Pfeffer, M.
Pollack, M. Tambe. 2007. “An Intelligent Personal
Assistant for Task and Time Management.” AI
Magazine.

Norman, D. A. 1991. Cognitive artifacts. In J. Carroll,
editor, Designing Interaction: Psychology at the
Human-Computer Interface. Cambridge University
Press.

