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Abstract 
To-do lists have been found to be the most popular 
personal information management tools, yet there is no 
automated system to interpret and act upon them when 
appropriate on behalf of the user. Automating to-do lists 
is challenging, not only because they are specified as free 
text but also because most items contain abbreviated 
tasks, many do not specify an action to be performed, and 
often refer to unrelated (personal) items. This paper 
presents our approach and an implemented system to 
process to-do list entries and map them to tasks that can 
be automated for the user by a set of agents. Since the 
format of to-do entries is not very amenable to natural 
language processing tools that can parse and create a 
structured interpretation, our approach is to exploit 
paraphrases of the target tasks that the agents can perform 
and that specify how the free-text maps to the task 
arguments. As users manually assign to-do to agents for 
automation, our system improves its performance by 
learning new paraphrases.  We show an evaluation of our 
approach in a corpus of 2100 to-do entries collected from 
users of an office assistant multi-agent system. 

Introduction   
 To-do lists are the most widely used of all personal 
information management tools, used more than calendars 
and contact lists (Jones and Thomas 1997).  Many to-do 
list managers are widely available on the web (e.g., 
todolistsoft.com, tadalist.com, todoist.com, voo2do.com 
among many others).  Although there have been user 
studies of to-do lists that have uncovered use patterns 
and desiderata (e.g., (Bellotti et al 2004; Hayes et al 
2003)), no system has been developed to date to provide 
intelligent assistance to users.  As (Norman 1991), we 
see an immense and largely unexplored opportunity 
through automatically interpreting, managing, executing, 
and in general assisting users with to-do lists.  To-do 
lists include items that can be acted upon by intelligent 
agents that have the capabilities to accomplish some of 
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those items.  This kind of investigation becomes possible 
as agent-based systems are developed to assist users with 
routine tasks, such as office assistants (e.g., Electric 
Elves (Tambe et al 2002) and CALO (Myers et al 2007; 
Berry et al 2006)) and other assistants that exploit agents 
and services on the web (e.g., (Berners-Lee et al 2001)). 
 Our initial focus is on mapping to-do list entries into 
the capabilities of agents that can automate those entries 
for the user.  To-do entries are jotted by the user as free 
text, while agent capabilities are formal descriptions that 
typically include a task to be accomplished and its 
arguments. A study of to-do lists created by several users 
of the CALO system over time showed that to-do lists 
have idiosyncratic content that make their interpretation 
a challenge (Gil and Ratnakar 2008).  Less than one in 
seven entries could be automated by some agent, since 
many entries contain tasks that only the user can do.  Of 
those, most were incomplete in that they did not specify 
necessary arguments. Two thirds of the entries in that 
study did not begin with a verb.  In summary, to-do list 
entries are not well-formed or complete sentences 
typically found in text, and lack the dialogue context that 
is present in conversational interfaces (e.g., (Allen et al 
2001)). 
 An important goal of our research is to accommodate 
new tasks as new agents become available or existing 
agents extend their capabilities.  This poses an important 
requirement that the system can learn to map to-do 
entries into new agent capabilities.  Learning would have 
the added advantage that the system could adapt its 
mappings to suit the idiosyncrasies of particular users 
(such as personal abbreviations).  Another advantage of 
learning is that the system would be able to take on any 
domain, rather than being designed and optimized for 
specific domains or purposes. 
 This paper describes an approach and implemented 
system that uses paraphrases of agent capabilities to map 
the free text of a to-do entry into a capability and its 
arguments.  The system learns new paraphrases as it sees 
examples of correct mappings, which can be collected 
from users as they task the agents by hand, or acquired 
from volunteer contributors (Chklovski 2005; Chklovski 
and Gil 2005).   
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 The paper begins with a general description of the 
different aspects of to-do list interpretation and mapping.  
After describing our approach and implementation, we 
present an evaluation of the system using a corpus of to-
do list entries collected from users over several months. 

Assisting Users with To-Do Lists 
 We consider six phases in interpreting and automating 
to-do list entries, shown in Figure 1.  The left side shows 
the kind of result expected from each step, and the right 
side gives an example.  As we will see, the automation 
of each of these steps can be turned into an interface 
extension that can be useful to the user in its own right. 
 Relevance involves determining whether a to-do list 
entry is relevant to any of the agent capabilities.  That is, 
whether the to-do entry is within the scope of the tasks 
that the system can automate for the user.  If the system 
has good performance in this step, it can help the user by 
highlighting those entries in the to-do list so that the user 
is aware that there are agents that could automate them.   
 Selection involves finding the agent capability (or 
target task) that is appropriate for automating a given to-
do entry.  Note that the system may generate several 
candidates.  If the system has good performance in this 
step, the top ranked candidate can be shown to the user 
as a possible way to automate the entry.  Other 
candidates, and there should not be too many, can be 
shown as alternatives to the user as a pull-down menu.   
 Association will determine which chunks of the to-do 
entry text correspond to which arguments in the target 
task.  Good performance in this step would allow the 
system to have the menu to task the agent pre-filled by 
those mapped arguments, requiring little or no editing 
from the user to task the agent. 
 The last three phases are shown here for completion 
but have not been the focus of our work to date.  
Recognition finds an object in the system that 
corresponds to the text chunk of an argument.  For 
example, the to-do entry may contain the first name of a 
person and the recognition phase would find that 
person’s formal representation, which will allow the 
agent internally to access email addresses or other 
information useful for the task.  Notice that not all 
arguments can be mapped to formal objects.  An 
example is the topic of a meeting, which is only useful 
(at least in our work) to the other human attendees.   
Completion involves completing the other argument 
values not included in the to-do list entry, either by using 
default values, typical values learned for each user, or 
values inferred from the user’s context (e.g., other 
meetings, emails, etc.)  Invocation involves deciding 
whether the agent should be invoked, which can be done 
with the user’s explicit consent or using some measure 
of adjustable autonomy for the task.   
 These last three stages could be done by the agent, 
where the agent could have mechanisms to set default 
values and  to make  decisions about  when  to  act.   The  

Figure 1: Phases involved in interpreting and 
automating to-do list entries.  This paper 
focuses on the first three phases. 

 
first three stages are properly the responsibility of a to-
do list manager and are the focus of this work. 

Using Paraphrases to Interpret To-Do List 
Entries 

 Our approach to interpreting to-do lists is to use 
paraphrases to re-state the to-do list entry until it can be 
mapped to a target task or the system runs out of 
paraphrases to try.  We pursued this direction for two 
main reasons. Because the to-do entries are incomplete 
and not well-formed sentences, they do not lend 
themselves to natural language techniques such as 
chunking and parsing.  The second reason is that we 
want to improve the system’s performance by learning as 
users use it. 
 In our approach, the system maintains a list of 
paraphrase patterns for each target task.  A paraphrase 
essentially reflects how the user might invoke certain 
tasks.  Paraphrase patterns contain special keywords 
combined with task arguments.  Some example 
paraphrase patterns for a task are: 

Task: SendEmail +recipient-s +topic 
Paraphrases: 
   ask +recipient-s to +topic 
   message to +recipient-s 
   send +topic to +recipient-s 
   email +recipient-s about +topic 



 In this example, “SendEmail” is the target task, which 
has the two arguments “recipients” and “topic”.  Task 
arguments are marked with a “+” in the paraphrase 
pattern.  Keywords in the patterns include “ask”, “to”, 
and “about.”  The keywords are used for matching 
paraphrases with the entry, while the arguments are used 
to map portions of the to-do entry to those arguments. In 
order to have a successful match, all the keywords in the 
pattern should match the to-do entry in the order that 
they are written in the paraphrase. Any portion of text in 
between matched keywords and marked in the pattern as 
an argument gets bound to that argument. Each 
paraphrase pattern has a direct correspondence between 
its arguments and the arguments in the target task.  Lists 
are marked in the pattern with the suffix “-s” at the end 
of the argument, which is matched with special 
keywords such as “and”, “or”, “/”, “,” in the to-do entry. 
Using the paraphrase patterns listed above, these are 
some example to-do items and their matches: 

Ask Bill to give feedback on paper 
 -> ask +recipient-s=”Bill” to +topic=”give feedback on paper” 

Ask Bill for feedback on paper 
 -> --No match-- 

Message to Bill about project report 
 -> message to +recipient-s=”Bill” +topic=”project report” 

Send message to Bill 
 -> message to +recipient-s=”Bill” 

 Note that the to-do entry “Send Message to Bill” 
matches the paraphrase pattern “message to +recipient-
s” as the whole pattern is contained within the entry. In 
other words, the text matches a paraphrase pattern if all 
keywords in the pattern match the text.  The reverse is 
not the case, for example the to-do entry “Email to Bill” 
would not be matched with the paraphrase pattern “send 
email to +person” since not all the pattern keywords are 
present in the to-do entry.  
 In selecting a target task, there may be several 
candidates and we produce a ranking based on the 
match.  We define the specificity of the paraphrase as the 
number of keywords in the paraphrase. In case of a 
match, the ranking of the match is the specificity of the 
paraphrase pattern that it matched against.  
 Paraphrase patterns can be provided by hand, which 
may be useful to seed the system and bootstrap its initial 
performance.  Our system can learn paraphrase patterns 
as the user invokes an agent by hand by selecting an 
agent from a menu and tasking it through a form-filling 
interface (this is how users task agents with to-do items 
in the current system).  An alternative approach is to 
learn paraphrases from volunteer contributors where the 
system can acquire the paraphrases off-line from 
volunteers by prompting them for variants of already 
known paraphrase patterns (Chklovski 2005).   
 To learn paraphrases, we create a variabilized pattern 
of each to-do entry that is mapped to a target task, where 
the variables correspond to the arguments in the target 
task.  Our training examples come from the user as they 
invoke agents by hand. Other researchers have addressed 

paraphrase learning from text corpora (e.g., (Barzilay 
and Lee 2003)), but make use of vast amounts of data (in 
the order of megabytes) that we do not have available.  
Learning is currently done by looking at the set of 
“answers” that are collected from the user over time. 
These answer keys contain the to-do entry and the 
matching task and arguments as filled by the user. The 
system scans through the to-do entry and replaces the 
text mapped to the argument with the task argument 
variable to create the paraphrase pattern. An example 
answer key is: 

to-do-entry: email John about demo deadlines 
task-type: SendEmail +recipients +topic 
arguments: recipients="John" topic="demo deadlines" 

 which would result in the following learned pattern: 
email +recipients about +topic 

 However, not all paraphrases that are created are 
eligible for use. We restrict paraphrase patterns as 
follows.  There needs to be at least one keyword, so for 
example "+topic" is not allowed.  This restriction is to 
avoid matching anything and everything. The more 
specific the paraphrase, the better chance there is of 
getting a correct match. Another restriction is that 
arguments must be separated by one or more keywords.  
For example, "ask +recipients +topic" is not allowed.  This 
second restriction is needed because we do not have a 
recognition phase.  That is, the system does not have a 
mechanism to correctly identify where the first argument 
stops and the second argument starts. In our current 
system, that paraphrase pattern would not be allowed (or 
learned).  We discuss this restriction further below. 

Metrics for Evaluation 
 Since our system is the first of its kind ever developed 
(at least to our knowledge), we needed to define metrics 
to measure its performance.  Because of the novelty of 
this research area, we have focused on evaluating the 
performance of the system’s functionality in terms of its 
internal algorithms rather than on evaluating usability 
issues.  Therefore, we evaluated the system off-line, with 
a corpus of to-do entries collected from CALO users 
over several months. 
 The evaluation tests performance on identification, 
selection, and association.  As we discussed earlier, good 
performance in each of the tasks can have direct utility to 
the user.  

Metrics for Task Relevance Identification 
 For task relevance identification, we measure 
performance with accuracy, precision, and recall metrics.  
The accuracy metric is defined as the percentage of to-do 
items that were correctly flagged or not flagged.  
Precision is defined as the fraction of to-do entries that 
were flagged as relevant that are actually relevant: 

Precision = {to-dos relevant to agent capabilities 
                    AND flagged as relevant}  



                    / {to-dos flagged as relevant} 

Recall is defined as the fraction of to-do entries actually 
relevant that are actually flagged by the system as 
relevant: 

Recall = {to-dos relevant to agent capabilities 
               AND flagged as relevant}  
                / {to-dos relevant to agent capabilities} 

 Precision and recall can be combined as a joint F-
measure metric that takes their harmonic mean, F-metric 
= 2/(1/Precision + 1/Recall).   

Metrics for Task Class Selection 
 To evaluate performance with respect to task class 
selection, we want to use metrics that reflect the 
system’s value to the user.  Precision and recall would 
not be appropriate.  For example, if an option is 
generated, but is ranked 17th, the system’s precision and 
recall would be high because the correct selection would 
have been generated.  But since the user may never see 
it, the performance metrics that we use should reflect 
that it was not found useful to the user.  Therefore, 
improving on the precision and recall metrics should not 
be our ultimate goal.  Ideally, the system should always 
aim to choose the right task as its top-ranked suggestion.  
To measure performance in this respect, we use the 
following metric:   

t-metric = % entries where the correct answer is the 
top option proposed 

 To track the system’s behavior, we use the following 
metrics as well:   

g-metric = % entries where the correct task mapping 
is proposed as a candidate 

c-metric = average number of candidates generated 
that are selected to appear in the top k to show 
user 

 Note that performance in the g-metric and the c-metric 
directly affects the t-metric, but our goal is to improve 
the t-metric performance. 

Metrics for Argument Association 
 For association, we measure performance in terms of 
how many corrections would the user have to do to the 
initial mapping and bindings proposed by the system in 
order to get the desired argument mappings.  That is, a 
given suggestion will be used to fill the initial task 
description that the user will correct if needed.  Our 
metric is the edit distance, namely how many changes 
would the user need to make to the system’s mapping 
and bindings if the user had to correct the top suggestion. 

Evaluation Methodology  
 For our evaluation, we obtained to-do entries and 
processed them off-line.  These to-do entries were 
obtained as users were jotting them as part of their 
normal use of the system.  The system was completely 
passive and provided no assistance with the to-do lists.  

Our goal at this stage of the project is to assess the 
quality of the system before it is deployed for use with 
true on-line learning and assistance.  

Evaluation Corpus.  We collected a corpus of 2400 to-
do list entries from a dozen users of CALO during two 
subsequent annual evaluation periods that lasted several 
months each.  A subset of 300 entries were extracted as a 
reference corpus and used for development and analysis 
purposes.  The remainder 2100 entries were set aside for 
evaluation. When providing examples throughout this 
paper, we created fictional to-do entries to protect the 
privacy of our users.  

Target Tasks.  The CALO Task Ontology where agents 
can register their capabilities is under development, and 
has not been populated.  However, it contains a set of 87 
task categories that were used to evaluate the CALO 
system.  These task categories only have the class name, 
and no arguments are specified.  Most of them are not 
relevant to the to-do list corpus collected.  Example task 
categories are: Decide, Explain, Move, Calculate, 
Execute, Commit, Learn, Affect, Wait, Input, Borrow, 
Claim, AnswerWithChoice, AnswerWithData, 
Announce, and Invoke.  We selected a subset of these 
tasks that we could map reasonably well to capabilities 
of agents available in CALO.  We represented their 
arguments based on the kind of information that 
automating these tasks would require for these agents. 
This resulted in a set of 18 candidate target tasks that we 
used for evaluation: 

PlanTrip +location 
PlanTrip +event +date +location 
ScheduleVisit +person +timeframe 
ScheduleInterview +visitor +timeframe 
ScheduleSeminar +person +timeframe 
ScheduleMeeting +attendees +topic +timeframe 
RescheduleMeeting +attendees +timeframe +topic 
ScheduleGroupVisit +group +topic +timeframe 
Buy +equipment +person 
Buy +office-supplies +person 
Buy +flight-reservation +person 
Lookup +document 
Download +url 
Print +document 
Edit +document 
Approve +purchase-request 
Approve +travel-request 
SendEmail +recipients +topic 

Answer Set.  We asked an annotator to label the test set 
with the correct answers for each task.  In some sense 
only the user that created the to-do item would know 
what the correct answers were based on their true 
intention and context, so the annotator took a best guess 
at what the tasks were intended to accomplish.  For 
example: 

To-Do-Entry:  Setup discussion on IUI paper 
Correct-Selection: ScheduleMeeting +person +timeframe +topic 
Correct-Association: topic = “IUI paper” 

 The to-do entries that did not correspond to any task 
were given NULL selection and association labels.  



There were a total of 382 entries that were marked with a 
target task, the rest did not correspond to any task.  For 
the entries that were mapped to tasks, 130 were mapped 
to SendEmail, 90 to Lookup, 58 to Edit, 51 to 
ScheduleMeeting, 25 to the PlanTrip tasks, 10 to the Buy 
tasks, 9 to ScheduleInterview, 3 to ScheduleVisit, and 2 
each to Download, Print and ScheduleSeminar. There 
were four tasks that did not appear at all in the annotated 
reference corpus and were the RescheduleMeeting, 
ScheduleGroupVisit, Buy, and Approve tasks. 
 Notice that the tasks included in each of the sets are 
not completely unrelated to one another in that they have 
many terms and argument types in common.  Therefore, 
the system must discriminate among them correctly.   

Results 
 We compared the performance of our system with 
respect to a baseline system that made random decisions, 
as well as with several configurations of bag of words 
matching.  Our system is shown as ordered matching, 
to distinguish it from bag of words matching of 
paraphrase patterns.  We show learning curves for each 
metric at 8%, 15%, 30%, 60% and 100% of the training 
data using 4-fold cross validation.  
 The baseline system performs no NL processing. For 
the relevance phase, this baseline system flags an entry 
as relevant 14% of the times, since that is the proportion 
of relevant entries estimated by prior corpus analysis 
(Gil and Ratnakar 2008).  For the selection phase, it 
chooses from the set of target tasks one or two tasks at 
random, and randomly ranks them. The baseline system 
does not generate any associations. 
 We also compared the performance of our system with 
simpler systems with minimal natural language 
processing capabilities. These systems use simple bag of 
words matching between the to-do entry and the task 
paraphrase patterns. We built two variants. One variant 
normalizes words from their morphological variations, 
using the well-known Porter stemmer 
(artarus.org/~martin/PorterStemmer).  The second 
variant also uses synonyms from WordNet (synsets), in 
addition to using the stemmer.  

Results for Task Relevance Identification 
  The accuracy metric is shown in Figure 2.  Our 
system has very good performance, over and above the 
performance of the other methods, with 87.6% accuracy 
after learning.  After learning, out of 2100 entries our 
system classified correctly 1841 entries (flagged 160 as 
relevant that were actually relevant and did not flag 1681 
that were actually not relevant) and misclassified the rest 
(flagged 37 that were actually not relevant and did not 
flag 222 that were actually relevant).   The accuracy of a 
simple baseline system that always guessed relevance 
would be 18% for this dataset (a bit higher than the 14% 
relevance found for the corpus in (Gil and Ratnakar 
2008)).  A  simple  baseline system  that  always guessed  

 
Figure 2: Task Relevance Identification: Accuracy 

 

 

 

 
Figure 3: Task Relevance: Precision, Recall, F-

Measure 
 



 

 

 
Figure 4: Task Selection metrics: t-metric, g-metric, 

c-metric 
 

 
Figure 5: Argument Association: edit distance 

irrelevance would be 82% accurate but to no good use as 
it would never do anything to assist the user. 
 Figure 3 shows the precision, recall, and F-measure 
metrics.  Our system shows very high precision, 
significantly higher than the other methods from very 
early on the training.   This means that when our system 
intervenes to make suggestions about a to-do entry, it is 
right to do so with very high probability.  Recall is low 
for our system, as can be expected since its matches are 
much more restrictive than the other methods.  We 
discuss how to address our overly constrained matching 
in the discussion section below. 

Results for Task Class Selection 
 Figure 4 shows the data for task class selection.  Our 
system performs best at the task, which is reflected in the 
t-metric results, and reaches over 90% correctness early 
during training.    Although the  g-metric  shows that all 
methods are able to generate the right answer as part of 
their candidate set, the c-metric shows that our system 
generates a single candidate very early on during 
training. The user would be shown the correct target 
task with very high probability. 

Results for Argument Association 
 Figure 5 shows the results for argument association. 
Notice that the baseline and bag of words methods do 
not have the ability to make such associations, so for 
those methods we show the amount of parameters that 
the correct answer would contain.  This corresponds to 
how many edits the user would have to make.  For 
example, “Email Bill” would correspond to sendEmail 
recipient=”Bill”, and since the to-do does not contain a 
topic then the user would only have to fill one argument 
of the target task by hand. In addition, we only reflect 
the edit distance of to-do entries where the selection 
phase for the method ranked the correct answer at the 
top.  Our system not only does this automatically but 
performs extremely well, requiring between 0.2 and 0.4 
user edits on average. 

 Discussion 
 We noted that the performance of our system suffered 
from a limitation of our paraphrase pattern language, 
namely that all arguments in a paraphrase must be 
separated by keywords. An example is: 

Todo Entry: Send Bill final paper 
Desired pattern: Send +recipient-s +topic 

 Ideally, such paraphrase pattern could be handled if 
the system were able to detect chunks in the to-do entry 
and map them to each of the arguments.  In this case, the 
system could identify “Bill” and “final paper” as 
chunks and map each to the respective argument.  This 
would also help distinguish between the two Buy tasks 
(one for equipment and another for office supplies).  Off-
the-shelf chunking and parsing tools are difficult to use 
in to-do entries because to-do entries are not complete or 



well-formed sentences.  We will investigate the use of 
adaptive parsers in future work. 
 An alternative that we are planning to explore is to 
expand our paraphrase approach to the recognition 
phase.  That is, to collect paraphrases for ontological 
objects that can give us type information. For example, 
we would collect paraphrases such as “Bill” and “Bill 
H.” that refer to the ontological object calo:WilliamHill 
which is of type calo:Person.  By combining recognition 
and matching, the system would be able to use 
paraphrase patterns without separating keywords. 

Conclusions 
This paper introduced a novel use for AI techniques in 

assisting users with to-do lists, which are used for 
personal information management more than calendars 
and other tools. By interpreting to-do entries and 
mapping them to the capabilities of agents, we can assist 
users by automating and managing their to-do lists.  To-
do lists are challenging to interpret as they are often 
incomplete and abbreviated.  Our approach is to exploit 
paraphrases of agent capabilities to interpret the entry 
and identify the task arguments.  We discussed the 
implementation of this approach in the context of the 
CALO office assistant architecture.  Our system 
improves its performance by learning new paraphrases 
from users.  

One important empirical question is whether users 
would adapt the way they jot to-do entries to facilitate 
the system’s interpretation and quality of assistance.  To 
investigate this, we are planning to test our system in an 
interactive mode. 
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